
A Fourth Order Accurate Adaptive Mesh

Refinement Method for Poisson’s Equation 1,2

Michael Barad ∗,1 and Phillip Colella 2

Department of Civil and Environmental Engineering, University of California,
Davis, California 95616 1

Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory,
Berkeley, California 94720 2

Abstract

We present a block-structured adaptive mesh refinement (AMR) method for com-
puting solutions to Poisson’s equation in two and three dimensions. It is based on a
conservative, finite-volume formulation of the classical Mehrstellen methods. This is
combined with finite volume AMR discretizations to obtain a method that is fourth-
order accurate in solution error, and with easily verifiable solvability conditions for
Neumann and periodic boundary conditions.

Key words: Poisson Equation, Mesh Refinement, Multigrid Methods
PACS: 02.60.Lj, 02.70.Bf, 41.05.+e, 41.20.Cv

∗ Corresponding author
Email address: mfbarad@ucdavis.edu (Michael Barad).
URL: edl.engr.ucdavis.edu (Michael Barad).

1 This work was supported by the Computational Science Graduate Fellowship
program of the Department of Energy, under grant number DE-FG02-97ER25308.
2 Research supported by the Applied Mathematics Program of the DOE Office of
Mathematics, Information, and Computational Sciences under the US Department
of Energy under contract No. DE-AC03-76SF00098.

Preprint submitted to Elsevier Science 20 August 2004

1 Introduction

In this paper, we present a fourth-order accurate numerical method for solving
Poisson’s equation

∆φ = ρ (1)

in two or three space dimensions in a rectangular domain with either Dirichlet,
Neumann, or periodic boundary conditions. Our approach uses a conservative,
finite-volume, AMR discretization that generalizes the classical Mehrstellen
methods [1]. Previously, nodal-point Mehrstellen discretizations of Poisson’s
equation have been combined with AMR [2]. Unlike those algorithms, the
present algorithm preserves discrete conservation form, thus making it com-
patible to solve coupled hyperbolic-elliptic problems using finite volume ap-
proximations for hyperbolic problems on adaptive grids, along the lines of
those in [3]. In addition, the present method has an obvious and easily verified
discretization of the solvability condition for Neumann or periodic boundary
conditions for the case of a general hierarchy of locally-refined grids. Such a
condition is not known for the nodal-point method cited above.

Our approach proceeds along the lines of that described in [4–6]. The single-
level operator is expressed in terms of a difference of fluxes on faces, with
ghost-cell data interpolated using a combination of coarse and fine grid values.
Neumann matching conditions at the coarse-fine interface are enforced by
refluxing [3], i.e. using the average of the fluxes at the next finer level to
compute the flux into coarse cells adjacent to a coarse-fine interface. In one
important respect, we depart from the approach taken in the second-order
algorithm, in the way we compute ghost-cell values. We compute higher-order
coarsenings of the fine grid values onto the coarse grid so as to interpolate
using values from a fixed stencil. In contrast, the methods cited above use
stencils that depend on the local distribution of coarse and fine grids, so as to
maintain the required level of accuracy while not using coarse-cell values that
are covered by finer cells. In order to reduce the complexity of this coarsening
process, we require the ratio between mesh spacings at successive AMR levels
to be an even number no less than four. The resulting method has a trunction
error that is fourth-order in the mesh spacing at all cells except those adjacent
to the boundary between refinement levels. In the latter case, the truncation
error is third-order in the mesh spacing. In numerical experiments, we observe
solution errors that are fourth-order in the mesh spacing, uniformly in space,
consistent with the modified equation analysis in [6,7]. We also observe some
superconvergence in this method. In particular, we can use a fourth-order
accurate interpolant for the ghost cell values, and still obtain fourth-order
accuracy in the solution, even though the truncation error is second-order on
a set of codimension one.

2

2 Notation and Calculus Identities

The underlying discretization of D-dimensional space is given as points (i0, ..., iD−1) =
i ∈ ZD. The problem domain is discretized using a grid Γ ⊂ ZD that is a
bounded subset of the lattice. Γ is used to represent a cell-centered discretiza-
tion of the continuous spatial domain into a collection of control volumes:
i ∈ Γ represents a region of space,

Vi = [ih, (i + u)h], (2)

where h is the mesh spacing, and u ∈ ZD is the vector whose components
are all equal to one. We can also define face-centered discretizations of space
based on those control volumes: Γed

= {i± 1
2
ed : i ∈ Γ}, where ed is the unit

vector in the d direction. Γed
is the discrete set that indexes the faces of the

cells in Γ whose normals are ed:

A
i+

1
2

ed
= [(i + ed)h, (i + u)h], i + 1

2
ed ∈ Γed

(3)

We define cell-centered discrete variables on Γ

φ : Γ → Rm

We denote by φi ∈ Rm the value of φ at cell i ∈ Γ. We can also define
face-centered vector fields on Γ:

~F = (F0, ..., FD−1) , Fd : Γed → Rm

We can define a discretized divergence operator on such a vector field.

(D · ~F)i =
1

h

D−1∑
d=0

(F
d,i+

1
2

ed
− F

d,i−1
2

ed
), i ∈ Γ (4)

In order to obtain fourth-order accurate finite volume methods, it is necessary
to distinguish between point values at cell and face centers, and the averages
over cells and faces. If ψ = ψ(~x), then we denote the point values at cell centers
by ψi = ψ((i+ 1

2
u)h) and at face centers by ψ

i+
1
2

ed
= ψ((i+ 1

2
(u+ed)h), and

the corresponding averages by

cell average: < ψ >i=
1

hD

∫
Vi

ψdV (5)

3

face average: < ψ >
i+

1
2

ed
=

1

hD−1

∫
A

i+
1
2

ed

ψdA (6)

The point values and averages are related to each other as follows.

< ψ >i= ψi +
h2

24
∆ψ +O(h4) (7)

< ψ >
i+

1
2

ed
= ψ

i+
1
2

ed
+
h2

24
∆⊥,dψ +O(h4) (8)

where ∆⊥,dψ =
∑
d′ 6=d

∂2ψ
∂x2

d′
, and the derivatives are evaluated at the cell and

face center, respectively.

We also denote by D2
d the centered second-difference operator in the d coor-

dinate direction.

(D2
dψ)i ≡

1

h2

(
ψi+ed − 2ψi + ψi−ed

)
=
∂2ψ

∂x2
d

+O(h2) (9)

3 Finite-Volume Formulation of Mehrstellen Discretizations

It follows from (1) and the divergence theorem that

< ρ >i=
1

h

D−1∑
d=0

(
<

∂φ

∂xd
>

i+
1
2

ed

−<
∂φ

∂xd
>

i−1
2

ed

)
(10)

This exact relationship is the starting point for finite-volume discretizations
of (1). We approximate the average of the fluxes to fourth order accuracy by
approximating the derivative by a finite difference then using equation (8) to
approximate the average over the face,

<
∂φ

∂xd
>

i+
1
2

ed

=
1

h
(φi+ed − φi)−

h2

24

∂3φ

∂x3
d

+
h2

24
∆⊥,d(

∂φ

∂xd
) +O(h4). (11)

In order to evaluate the third derivative in a compact fashion to O(h2), we
use equation (1) and substitute

4

∂2φ

∂x2
d

= ρ−∆⊥,dφ (12)

into equation (11). This substitution yields

<
∂φ

∂xd
>=

1

h
(φi+ed −φi)+

h2

24

(
∆⊥,d(

∂φ

∂xd
)− ∂

∂xd

(
ρ−∆⊥,dφ

))
+O(h4). (13)

This leads to the following fourth order accurate finite-volume discretization,

< ρ >i=(D · ~F φ)i −
h2

24
(D · ~F ρ)i (14)

=L4(φ)i −
h2

24
L2(ρ)i (15)

(16)

where, away from boundaries, we have

F φ

d,i+
1
2

ed
=

1

h

((
φi+ed +

h2

12
(∆⊥,d

2 φ)i+ed

)
−
(
φi +

h2

12
(∆⊥,d

2 φ)i

))
(17)

F ρ

d,i+
1
2

ed
=

1

h
(ρi+ed − ρi) (18)

with ∆⊥,d
2 =

∑
d′ 6=dD

2
d′ .

It is convenient to express the operators L2, L4 in terms of finite difference
stencils away from domain boundaries. In both two and three dimensions,
L2ρ =

∑
dD

2
dρ. For L4, we have in two dimensions,

L4φ =
1

6h2

1 4 1

4 -20 4

1 4 1

φ (19)

and in three dimensions,

L4φ =
1

6h2

 0 1 0

1 2 1

0 1 0

1 2 1

2 -24 2

1 2 1

0 1 0

1 2 1

0 1 0

 φ (20)

If we utilize equation (7) in combination with equation (15) we obtain the
classical Mehrstellen method,

5

(L4φ)i = ρi +
h2

12
(L2ρ)i. (21)

3.1 Domain Boundary Conditions

For periodic boundary conditions, we extend the solution to the required ghost
cells using periodic images of the solution. For Dirichlet boundary conditions,
we use cell centered ghost values for computing fluxes. For the value of φ in
a ghost cell that shares a face with a cell in the computational domain, we
extrapolate using a quartic polynomial that interpolates the first four cells in
the normal direction, plus the value on the Dirichlet boundary (Figure 1).

φG =
1

35

[
128φB − 140φ0 + 70φ1 − 28φ2 + 5φ3

]
(22)

To fill in the remaining values of φ needed at corners (2D) or edges (3D), we
extrapolate from the two coordinate directions using a quartic polynomial that
interpolates the five adjacent ghost values in each of two coordinate directions,
and average the results.

φ0 = 5φ1 − 10φ2 + 10φ3 − 5φ4 + φ5 (23)

In the case of Neumann boundary conditions, the boundary data is assumed
to be specified directly as FB, an O(h4) value for the average of the flux over
the face.

F φ

i0+
1
2

ed
+
h2

24
F ρ

i0+
1
2

ed
= FB

i0+
1
2

ed
=<

∂φ

∂xd
>

i0+
1
2

ed
+O(h4)

where i0 + 1
2
ed is a face on the boundary. In that case it is arbitrary to which

component of the boundary flux, F φ or h2

24
F ρ, that FB is assigned to. For

example, one can set F φ on the boundary to zero, and set h2

24
F ρ = FB. We

also need to set ghost values for φ that are required to compute fluxes on
interior faces. For a value of φ in a ghost cell that shares a face with a cell
in the computational domain, we extrapolate using a quartic polynomial that
interpolates the first four cells in the normal direction plus a O(h4) value for
the normal derivative at the center of the face.

φG =
1

22

[
− 24hφxd,B + 17φ0 + 9φ1 − 5φ2 + φ3

]
(24)

6

G 0 1 2 3

B

Fig. 1. Domain boundary conditions

The remaining values at the corners are filled in exactly as in the Dirichlet
case.

4 AMR Discretization

In this section we describe the extension of the Mehrstellen algorithm given
above to the case of a locally-refined grid. Our approach will be to express the
AMR discretizations in terms of the corresponding uniform grid discretizations
at each level. An appropriate interpolation operator provides ghost cell values
for points in the stencil extending outside of the grids at that level. We will also
define a conservative discretization of the divergence operator on multilevel
data.

We define a coarsening operator by Cr : ZD → ZD,

Cr(i) = (b i0
r
c, ..., b id−1

r
c)

where r is a positive integer. These operators acting on subsets of ZD can be
extended in a natural way to the face-centered sets: Cr(Γed

) ≡ (Cr(Γ))ed
. We

use a finite-volume discretization of space to represent a nested hierarchy of
grids that discretize the same continuous spatial domain. We assume that our
problem domain can be discretized by a nested hierarchy of grids Γ0...Γlmax,
with Γl+1 = C−1

nl
ref

(Γl). and that the mesh spacings hl associated with Γl satisfy

hl

hl+1 = nlref . The integer nlref is the refinement ratio between level l and l+ 1.
These conditions imply that the underlying continuous spatial domains defined
by the control volumes are all identical. In this paper we will further assume
nlref is even and no less than 4. For any set Υ ⊆ Γl, we define G(Υ, r), r > 0,
to the set of all points within a | · |-distance r of Υ that are still contained in

7

Γl

G(Υ, r) = Γl ∩ ∪
|i|≤r

Υ + i

where |i| = max
d=0...D−1

(|id|), We can extend the definition to the case r < 0

G(Υ, r) = Γl − G(Γl −Υ,−r)

Thus G(Υ, r) consists of all of the points in Υ that are within a distance −r
from points in the complement of Υ in Γl. In the case that there are periodic
boundary conditions in one or more of the coordinate directions, we think of
the various sets appearing here and in what follows as consisting of the set
combined with all of its periodic images for the purpose of defining set oper-
ations and computing ghost cell values. For example, G(Υ, r) is obtained by
growing the union of Υ with its periodic images, and performing the intersec-
tions and differences with the union of Γl with its periodic images.

We make two assumptions about the nesting of grids at successive levels. We
require the control volume corresponding to a cell in Ωl−1 is either completely
contained in the control volumes defined by Ωl or its intersection has zero
volume. We also assume that there is at least 2nlref level l cells separating
level l+ 1 cells from level l− 1 cells: G(Cnl

nref
(Ωl+1), 2nlref) ⊆ Ωl. We will refer

to grid hierarchies that meet these two conditions as being properly nested.
This is a much more restrictive notion of proper nesting than is typically
used for second-order finite-volume methods, but is imposed to simplify the
coarse-fine interpolation process.

From a formal numerical analysis standpoint, a solution on an adaptive mesh
hierarchy {Ωl}lmax

l=0 approximates the exact solution to the PDE only on those
cells that are not covered by a grid at a finer level. We define the valid region
of Ωl as,

Ωl
valid = Ωl − Cnl

ref
(Ωl+1).

A composite array ψcomp is a collection of discrete values defined on the valid
regions at each of the levels of refinement.

ψcomp = {ψl,valid}lmax
l=0 , ψl,valid : Ωl

valid → Rm

We can also define valid regions and composite arrays for face-centered vari-

ables. Ωl,ed

valid = Ωl,ed − Cnl
ref

(Ωl+1,ed
). Thus, Ωl,ed

valid consists of d-faces that are

not covered by the d-faces at the next finer level. A composite vector field
~F comp = {~F l,valid}lmax

l=0 is defined as follows.

~F l,valid = (F l,valid
0 . . . F l,valid

D−1) , F l,valid
d : Ωl,ed

valid → R

8

Thus a composite vector field has values at level l on all of the faces not
covered by faces at the next finer level.

We want to define a composite divergence Dcomp(~F l+1,valid, ~F l,valid)i for i ∈
Ωl
valid. To do this, we construct an extension of ~F l,valid to the edges adjacent

to Ωl
valid that are covered by fine level faces. On the valid coarse-level d-faces,

F l
d = F l,valid

d . On the faces adjacent to cells in Ωl
valid, but not in Ωl,ed

valid, we set
F l
d =< F l+1,valid

d >, the average of F l+1
d onto the next coarser level.

< F l+1
d >

ic+
1
2

ed
=

1

(nref)D−1

∑
i+

1
2

ed∈Fd

F l+1

d,i+
1
2

ed
, ic + 1

2
ed ∈ ζ l+1

d,+ ∪ ζ l+1
d,−

Here Fd is the set of all fine level d-faces that are covered by A
ic+

1
2

ed
. ζ l+1

d,±

consists of all the d-faces in Ωl on the boundary of Ωl+1, with valid cells on
the low (± = −) or high (± = +) side.

ζ l+1
d,± = {i± 1

2
ed : i± ed ∈ Ωl

valid, i ∈ Cnref
(Ωl+1)}

Given that extension, our composite divergence is defined

Dcomp(F l+1,valid, F l,valid)i = D · ~F l
i , i ∈ Ωl

valid (25)

It is useful to expressDcomp as a the application of the level divergence operator
D applied to extensions of ~F l,valid to the entire level, followed by a step that
corrects the cells in Ωl

valid that are adjacent to Ωl+1. We define a flux register

δ ~F l+1 associated with the fine level

δ ~F l+1 = (δF l+1
0 , ..., δF l+1

D−1)

δF l+1
d : ζ l+1

d,+ ∪ ζ l+1
d,− → Rm

Let ~F l be any coarse level vector field that extends ~F l,valid, i.e.

F l
d = F l,valid

d on Ωc,ed

valid

Then for i ∈ Ωl
valid,

Dcomp(~F l+1,valid, ~F l,valid)i = (D~F l)i +DR(δ ~F l+1)i (26)

Here δ ~F l+1 is a flux register, set to be

δF l+1
d =< F l+1

d > −F l
d on ζ ld,+ ∪ ζ ld,−

DR is the reflux divergence operator, given by the following for valid coarse

9

level cells adjacent to Ωl+1.

DR(δ ~F l+1)i =
1

hl

D−1∑
d=0

∑
±=+,−:

i±1
2

ed∈ζl+1
d,∓

±δF l+1

d,i±1
2

ed

For the remaining cells in Ωl
valid, DR(δ ~F l+1) is defined to be identically zero.

We can now define our Mehrstellen discretization of (1) on a locally-refined
grid as follows. On each level, we compute φl,ext on G(Ωl, 1)−G(Cnl

ref
(Ωl+1),−2)

such that φl,ext = φl,valid on Ωl
valid. For i ∈ Ωl

valid, we define

Lcomp,4(φcomp, ρcomp)i ≡ (D · ~F φ,l)i +DR(δ ~F φ,l+1)i (27)

Lcomp,2(ρcomp)i ≡ (D · ~F ρ,l)i +DR(δ ~F ρ,l+1)i (28)

Here F φ,l, F φ,l+1 are computed by applying (17) to φl,ext, φl+1,ext, combined
with the problem domain boundary conditions. As we will see, the extensions
of φl, φl+1 depend linearly on ρl, ρl+1, a dependence which is explicitly denoted
in (27). F ρ,l, F ρ,l+1 are computed similarly, using the second-order extensions
of ρl, ρl+1 described in [6].

We define Mehrstellen discretization of (1) as follows

Lcomp,4(φcomp, ρcomp)i =< ρl >i +
(hl)2

24
Lcomp,2(ρcomp)i (29)

i ∈ Ωl
valid (30)

Where < ρ >i is some O(h4) accurate estimate of the average of the density.
In computations presented here, we have taken < ρ >i= ρi + h2

24
Lcomp,2(ρ)i,

where ρi is the value of the density at the cell center.

We note that the form of the equations given here leads to the following
necessary conditions for solvability for the case of all periodic or Neumann
boundary conditions.∑

l

∑
i∈Ωl

valid

(hl)D < ρ >l
i =

∑
l

∑
d

∑
i+

1
2

ed∈Bl
d

(hl)D−1FB

i+
1
2

ed
(Neumann)

= 0 (periodic)

For the Neumann case, Bld are the faces in the d direction on the intersection
of the level valid cells with the domain boundary, and < F > are the specified

10

Fig. 2. Coarsening and interpolation

face averages of the fluxes on the boundary. And while we have no proof of
this, numerical experiments seem to indicate that these conditions are also
sufficient.

To complete the definition of the discretization, we need to specify how we
compute the extended values of φ at each level. We do this in two steps. First,
we specify the calculation of the extended values on cells covered by the next
finer level. Then, given that extension of the data on Ωl−1, we can compute
the ghost cell values on G(Ωl, 1)− Ωl.

4.1 Coarsening and Interpolation

We need to compute φl−1,ext at coarse cell centers in areas where we do not
have valid coarse data. In figure 2, the large open circles in the fine-grid region
indicate where we need to coarsen from the fine cell data onto the coarse grid.
These are needed either to evaluate the valid coarse-grid fluxes, or to perform
interpolation from the coarse grid to obtain fine grid ghost cell values. To do
this we employ a sixth order accurate coarsening procedure to the fine data.

For ψ : Ωl → R, we define 〈ψ〉(2) : Cnref
(Ωl) → R to be the coarsening of ψ

from a 2D-sized block of fine cells centered at (ic + 1
2
u)hc:

〈ψ〉(2)
ic

=
1

2D
∑

s:sd=0,1

ψ
nref (ic+

1
2

u)−s
. (31)

11

If ψi = ψ((i + 1
2
u)h), we have the following approximation result:

〈ψ〉(2)
ic

=ψ((ic + 1
2
u)hc) +

h2

8
∆ψ

+
h4

384

(
∆∆ψ + 4

∑
0≤d1<d2<D

ψxd1
xd1

xd2
xd2

)
+O(h6)

(32)

where all of the derivatives are evaluated at (ic + 1
2
u)hc. Applying (32) to φ

and using (1), we obtain the following formula

〈φl〉(6)
ic
≡〈φl〉(2)

ic
− h2

8
(〈ρl〉(2)ic

− h2

8
〈∆ρl〉(2)ic

)

− h4

384

(
〈∆ρl〉(2)ic

) + 4
∑

0≤d1<d2<D
〈φlxd1

xd1
xd2

xd2
〉(2)

)
= φ((ic + 1

2
u)h) +O(h6)

(33)

where the derivatives on the fine grid are replaced by second order accurate
finite differences: ∆ → ∑

dD
2
d, ∂

2
xd1
∂2
xd2

→ D2
d1
D2
d2

Given φ defined on valid fine cells, we define on extended values on the region
covered by the fine grid as follows:

φl−1,ext
i = 〈φl〉(6)

i , i ∈ Cnl−1
ref

(Ωl)− G(Cnl−1
ref

(Ωl),−2) (34)

We note that the stencils for the extended values at a coarse cell are contained
entirely in the fine cells covered by that coarse cell, provided that nref ≥ 4.

We use an O(h5) interpolation procedure to compute φl,ext on G(Ωl, 1) − Ωl.
This is done in two steps, as seen in figure 2. First, we compute an O(h5)
interpolant in the direction tangent to the coarse-fine boundary, at the loca-
tions indicated by the ×’s. This uses all the values within a | · |-distance two
in the plane parallel to the boundary. In figure 2, this corresponds to five of
the coarse cell centers indicated by large open circles: one at the center, and
two on either side. If any of these cells are covered by the next-finer grid,
the coarse-grid values (34) are used. The tangentially-interpolated values are
used with four points on the fine grid (indicated by the small open circles)
to interpolate the values at the ghost cell locations (indicated by the open
boxes).

In two dimensions, the tangential interpolation is done using a quartic poly-
nomial. For a refinement ratio of four, the interpolation formulae are given as
follows (see figure 3).

12

 1 2 3 4 5

 x x x x

A B C D

...
...

..

...
...

..

...
...

..

Fig. 3. Quartic interpolation parallel to the coarse-fine interface

 5 4 3 2 1i

Fig. 4. Quartic interpolation normal to the coarse-fine interface

φXC =
1

32768

[
315φl−1

1 − 2380φl−1
2 + 32130φl−1

3 + 3060φl−1
4 − 357φl−1

5

]
(35)

φXD =
1

32768

[
715φl−1

1 − 4940φl−1
2 + 27170φl−1

3 + 10868φl−1
4 − 1045φl−1

5

]
(36)

The other two points (A & B) use the same formula, but with the order of
the input coarse-grid values reversed. In three dimensions, the interpolation in
the plane is done as a tensor product of the quartic interpolation above. The
interpolation formula (35) is used in one coordinate direction to compute five
coarse-grid values in each of nlref 1D stencils in the other coordinate direction.
We then apply (35) in the second coordinate direction to obtain the required
values.

The values at the ghost cells are then obtained using a 1D quartic interpolant
(see figure 4). For a refinement ratio of four, the formula is given as follows.

φl,exti =
1

1155

[
128φX1 + 2772φl2 − 2970φl3 + 1540φl4 − 315φl5

]
(37)

For coarse-fine interface ghost cell corners where we can interpolate coming
from different directions (see the far left open square in figure 2), we average
the different interpolations.

To obtain the remaining corner/edge ghost cells (see the triangle in figure 2),
we interpolate using our new ghost values (see the solid squares in figure 2).
For this interpolation we simply extend quartic polynomials through 5 ghost
points (per direction), and average results coming from different directions.
The resulting corner/edge ghost points (the triangles) depend on both fine
and coarse values, as the ghost points used (the solid squares) are derived
from surrounding coarse and fine values.

13

5 Adaptive Multigrid Algorithm Description

In order to solve the system (29) using a geometric multigrid algorithm for
linear systems, we need to eliminate the dependence of L4 on ρcomp. We define
M comp,4(φcomp) ≡ Lcomp,4(φcomp, ρcomp ≡ 0)

M comp,4(φcomp) =gl

= < ρl >i +
(hl)2

24
Lcomp,2(ρcomp)i − Lcomp,4(φcomp ≡ 0, ρcomp)

(38)

The system (38) is a linear system for φcomp.

We also define the operatorMnf is a two-level discretization of the Mehrstellen
Laplacian:

Mnf (φl, φl−1,valid) = L4(φl,ext,0) (39)

φl : Ωl → R (40)

Where φl,ext,0 = φl on Ωl, and is otherwise given by the interpolation procedure
in Section 4.1, but with ρl, ρl−1 ≡ 0.

We solve (38) using the approach in [5,8] It is similar to the algorithm used
in [9] to compute steady incompressible flow, and has been used in a variety
of settings [2,10–12].

A pseudo-code description of the algorithm is given in figures 5-6. In multigrid
we use standard averaging and piecewise constant interpolation operators,
Average and Ipwc, as in [6].

The smoothing operator mgRelax(φf , Rf , r) performs a multigrid V-cycle it-
eration on φf for the operator Mnf , assuming the coarse-grid values required
for the boundary conditions are identically zero.

6 Convergence of the Algorithm

We have selected four test problems to both demonstrate the algorithm, and
illustrate fourth order convergence. The first and third problems are in two
dimensions, while the other two are three dimensional problems. For all prob-
lems we use AMR, and for some we compare with single grid versions and/or
second order methods. We chose three problems with analytic solutions, and

14

procedure mgRelax(φf , Rf , r)
{

for i = 1, . . . , NumSmoothDown
φf := φf + λ(Mnf (φf , φc ≡ 0)−Rf)

end for
if (r > 2) then

δc := 0
Rc := Average(Rf −Mnf (φf , φc ≡ 0))
mgRelax(δc, Rc, r/2)
φf := φf + Ipwc(δ

c)
for i = 1, . . . , NumSmoothUp

φf := φf + λ(Mnf (φf , φc ≡ 0)−Rf)
end for

end if
}

Fig. 5. Recursive relaxation procedure.

one classic problem from fluid dynamics. For the first three problems we com-
pute errors. We compute the truncation error by,

τ comp = gcomp −M comp,4(φcomp,exact), (41)

and solution error as,

ecomp = φcomp,exact − φcomp. (42)

We can then compute p-norms as follows:

‖e‖p =
(∑

l

∑
i∈Ωl

valid

|ei|p(hl)D
)1/p

. (43)

Details of the test problems are given in the following sub-sections.

6.1 Problem 1

This first test problem has a doubly periodic, unit square solution domain.
Our exact solution is,

φ = sin (2πx) sin (2πy), (44)

15

ρ̄ := ρ+ h2

24
Lcomp,2(ρ)

g := ρ̄− Lcomp,4(0, ρ)
R := g −M(φ)
while (||R|| > ε||Rinitial||)

AMRVCycleMG(lmax)
R := g −M(φ)

end while

Procedure AMRVCycleMG(level l):
if (l = lmax) then Rl := gl −Mnf (φl, φl−1)
if (l > 0) then

φl,save := φl on Ωl

el := 0 on Ωl

mgRelax(el, Rl, nl−1
ref)

φl := φl + el

el−1 := 0 on Ωl−1

Rl−1 := Average(Rl −Mnf (el, el−1)) on Cnl−1
ref

(Ωl)

Rl−1 := gl−1 −M comp,l−1(φ) on Ωl−1 − Cnl−1
ref

(Ωl)

AMRVCycleMG(l − 1)
el := el + Ipwc(e

l−1)
Rl := Rl −Mnf,l(el, el−1)
δel := 0 on Ωl

mgRelax(δel, Rl, nl−1
ref)

el := el + δel

φl := φl,save + el

else
solve Mnf (e0) = R0 on Ω0.
φ0 := φ0 + e0

end if

Fig. 6. Pseudo-code description of the AMR multigrid algorithm.

ρ = −8π2 sin (2πx) sin (2πy). (45)

For this problem, we solved (1) for φ, given (45) using a number of different
methods. First we computed the solution using our second order accurate
AMR solver, and then with our fourth order accurate AMR solver. Results
from these runs are shown in table 1. The expected convergence rates are
apparent for these tests. We achieved second order solution error (first order
accurate truncation error not shown) for the second order method. For the
fourth order method we achieved fourth order accuracy for solution error and
third for truncation error. Note the tremendous difference in magnitude of the
error (fourth compared to second), even for the coarsest grids.

16

Base Grid h = 1/64 Rate 1/128 Rate 1/256 Rate 1/512

L1 Solution 1.075e-04 2.024 2.644e-05 2.011 6.562e-06 2.005 1.635e-06

L2 Solution 1.278e-04 2.031 3.129e-05 2.013 7.751e-06 2.006 1.929e-06

L∞ Solution 2.306e-04 2.079 5.457e-05 2.036 1.330e-05 2.017 3.286e-06

(a) Second-Order Method, 2 AMR Levels (2D), Quadratic Coarse-Fine Interpolation

Base Grid h = 1/64 Rate 1/128 Rate 1/256 Rate 1/512

L1 Solution 1.361e-07 4.003 8.490e-09 4.001 5.302e-10 4.001 3.312e-11

L2 Solution 1.672e-07 4.001 1.044e-08 4.001 6.523e-10 4.001 4.075e-11

L∞ Solution 3.182e-07 4.014 1.970e-08 4.004 1.228e-09 4.004 7.652e-11

L∞ Truncation 4.303e-04 2.994 5.402e-05 2.997 6.768e-06 2.997 8.476e-07

(b) Fourth-Order Method, 2 AMR Levels (2D), Quartic Coarse-Fine Interpolation

Table 1
Test problem 1: φ = sin (2πx) sin (2πy), Solution and Truncation Errors with Con-
vergence Rates

Subsequently, we tested the effect of lowering the accuracy of the coarse-fine
interpolation on the fourth order accurate method. For this test we first used
a quadratic interpolant tangential to the interface with a quartic interpolant
normal to the interface. Results for this are shown in table 2. This first alter-
ation lowered the truncation error to first order accurate due to the quadratic
interpolation, which yields third order accurate solution error. Our second
test was to use a quartic interpolant tangential to the interface and a cubic
interpolant normal to the interface. Results are shown in table 2. This second
alteration lowered the truncation error to second order accurate due to the cu-
bic interpolation, which yielded a fourth order accurate solution error. While
this second alteration yielded a fully fourth order accurate solution error, the
norms of the solution error were degraded in magnitude.

6.2 Problem 2

For this second test problem we illustrate our capability to achieve fourth
order accuracy for three dimensional problems. The following expression is
what we used for this doubly periodic, unit domain, test problem.

φ = sin (2πx) sin (2πy) sin (2πz) (46)

17

Base Grid h = 1/64 Rate 1/128 Rate 1/256

L1 Solution 7.641e-07 3.053 9.204e-08 3.012 1.141e-08

L2 Solution 1.060e-06 3.040 1.289e-07 3.010 1.600e-08

L∞ Solution 1.245e-05 2.857 1.719e-06 2.905 2.295e-07

L∞ Truncation 3.718e-01 0.996 1.864e-01 0.999 9.324e-02

(a) 2 AMR Levels (2D), Coarse-Fine Interpolation with Quadratic
Tangential and Quartic Normal to Interface

Base Grid h = 1/64 Rate 1/128 Rate 1/256

L1 Solution 1.403e-07 4.024 8.623e-09 4.012 5.346e-10

L2 Solution 1.727e-07 4.025 1.061e-08 4.013 6.574e-10

L∞ Solution 4.656e-07 3.962 2.987e-08 3.982 1.891e-09

L∞ Truncation 9.258e-03 2.083 2.185e-03 2.046 5.290e-04

(b) 2 AMR Levels (2D), Coarse-Fine Interpolation with Quartic Tan-
gential and Cubic Normal to Interface

Table 2
Test problem 1: φ = sin (2πx) sin (2πy), Solution and Truncation Errors with Con-
vergence Rates. Lower order coarse-fine interpolation.

Base Grid h = 1/8 Rate 1/16 Rate 1/32

L1 Solution 5.803e-04 3.525 5.042e-05 4.027 3.093e-06

L2 Solution 8.320e-04 3.610 6.815e-05 3.997 4.268e-06

L∞ Solution 2.375e-03 3.595 1.966e-04 3.964 1.260e-05

L∞ Truncation 3.180e-01 2.256 6.657e-02 2.904 8.896e-03

(a) 2 AMR Levels (3D)

Table 3
Test problem 2: φ = sin (2πx) sin (2πy) sin (2πz), Solution and Truncation Errors
with Convergence Rates

Again this results in an analytic form for ρ (given equation (1)). Results from
this test problem are presented in Table 3.

The results are still clearly fourth order accurate.

18

Base Grid h = 1/128 Rate 1/256 Rate 1/512

L1 Solution 3.53e-014 4.185 1.94e-015 4.290 9.92e-017

L2 Solution 9.02e-014 3.868 6.18e-015 4.130 3.53e-016

L∞ Solution 1.48e-012 3.817 1.05e-013 4.075 6.23e-015

(a) 2 AMR Levels (2D)

Base Grid h = 1/512 Rate 1/1024 Rate 1/2048

L1 Solution 3.24e-014 4.705 1.24e-015 4.775 4.54e-017

L2 Solution 8.55e-014 4.126 4.90e-015 4.040 2.98e-016

L∞ Solution 1.64e-012 4.111 9.49e-014 3.989 5.98e-015

(b) Single Level (2D)

Table 4
Test problem 3: Solution errors and convergence rates

6.3 Problem 3

For this test problem we present two dimensional solutions with inhomoge-
neous Dirichlet boundary conditions. The following expressions are what we
used for this unit domain test problem.

φ =

r10

100a8 − 4r9

81a7 + 3r8

32a6 − 4r7

49a5 + r6

36a4 r < a
a2

1260
(ln(r)− ln(a) + 1627

2520
) r ≥ a

(47)

ρ =

(r
a
− (r

a
)2)4 r < a

0 r ≥ a
(48)

Where r is the radius and we set a = 0.06. The AMR grid layout for this
problem was a simple square refinement patch nested within the coarse level.
For example, on a 2 level AMR run we used a 256x256 cell base grid with
h=1/256, and a centered refined patch of 256x256 cells with h=1/1024. Re-
sults from this test problem are presented in Table 4. We also present solution
errors for an AMR run and the equivalent single grid run in figures 8 and 7.
Inspection of Table 4 reveals fourth order accuracy. Table 4 also shows approx-
imately equivalent error magnitude for AMR vs. non-AMR (with equivalent
finest resolution), even though the AMR computations used eight times fewer
computational cells.

19

Fig. 7. Problem 3, Contour plot of the solution error for a h=1/1024 single grid run.

6.4 Problem 4

For this last problem we evaluate the performance of the algorithm for a com-
plex three dimensional problem. This test problem is based on a co-rotating
vortex ring problem from fluid dynamics. The right hand side is specified as
two rings in a periodic, unit cube domain. Each ring is specified by a location
of the center of the ring (x0, y0, z0), the radius of the center of the local cross-
section of the ring from the center of the ring r, and the strength of the ring
Γ.

The cross-sectional charge distribution in each ring is given by

ρ(β) =
Γ

aσ2
e(−

β
σ

)3 (49)

where β is the local distance from the center of the ring cross-section, a =
2268.85, and σ = 0.0275.

For this problem, the first ring is centered at (0.5, 0.5, 0.4), with a radius of
0.2, and strength Γ of 1.5. The second ring is centered at (0.5, 0.5, 0.65), with
a radius of 0.25 and a strength Γ = 1.0.

20

Fig. 8. Problem 3, Contour plot of the solution error for a 2 level AMR run (h=1/256,
h=1/1024). The black box indicates the finer level.

Results from running this test problem at different resolutions, see figure 9,
show that the method obtains residual reductions typical of multigrid. Also
note that the method exhibits desired solvability charactiersitics, and reduces
the residual by a constant factor until the stopping threshold is met. In figure
10 we have isolated the charge distribution ρ, by isosurfacing two equal valued
regions. We slice through the solution with a plane that is colored by the
solution, φ. The slicing plane also illustrates the individual computational
cells from the 3 level AMR hierarchy used in the solve. We hope that this
illustrates our capability to solve Poisson’s equation for real problems.

7 Conclusions and Future Research

We have presented a new adaptive mesh refinement algorithm for Poisson’s
based on a finite-volume formulation of classical Mehrstellen discretization of
the Laplacian, and extended to adaptively refined meshes using the ideas in
[4,6]. The truncation error of the method is O(h4) except near boundaries
between refinement levels, where it is O(h3). Modified-equation analysis sug-
gests that the solution error is O(h4) uniformly, a result that is consistent with

21

Fig. 9. Problem 4, Plot of the ∞-norm of the residual versus multigrid iteration.

Fig. 10. Problem 4, 3D AMR solution with isosurface of the right hand side ρ and a
slice colored by the solution φ. We show individual computational cells on the slice.
The 3D boxes represent the disjoint union of rectangles (Ωl

k’s).

observed convergence of the method. We also observed a somewhat surprising
superconvergence phenomenon. Even if we use an O(h4) interpolant at the

22

boundary, we still obtain O(h4) solution error, even though the truncation
error near the boundary is O(h2).

The approach described here suggests a broader program for higher-order
AMR methods. The quadrature formulas (7), (8) provide a systematic mech-
anism for distinguishing between averages over cells, averages over faces, and
point values, to fourth-order accuracy. This can be combined with the ideas in
[13] to obtain fourth-order in space finite-volume discretizations for nonlinear
hyperbolic problems on an AMR grid. It is not obvious how to extend the
Mehrstellen discretizations to the case where the right-hand side includes a
time derivative, particularly in the case where implicit differencing in time
is required. We will be considering a variety of possible approaches here, in-
cluding fully implicit methods and predictor-corrector approximations to such
methods in which the Mehrstellen correction is treated explicitly. The ap-
proach outlined here is straightforward to pursue in conjunction with second-
order accurate temporal discretizations. However, the extension to higher or-
der in time is still an active research issue [14]. Finally, there is a possibility
of extending this approach to complex geometries using embedded boundary
methods [7]. In this case, it would be necessary to compute higher moments
of the intersections between the irregular domain and the Cartesian grid.

Acknowledgments

The authors would like to thank Dan Graves, Terry Ligocki, Dan Martin,
and Peter Schwartz for many useful discussions during the preparation of
this paper. The first author would like to thank his Ph.D. adviser, Professor
Geoffrey Schladow, for allowing him to take the additional time required to
complete this project.

References

[1] L. Collatz, The Numerical Treatment of Differential Equations, Springer-Verlag,
New York, NY, 1966.

[2] A. S. Almgren, T. Buttke, P. Colella, A fast adaptive vortex method in three
dimensions, J. Comput. Phys. 113 (2) (1994) 177–200.

[3] M. J. Berger, P. Colella, Local adaptive mesh refinement for shock
hydrodynamics, J. Comput. Phys. 82 (1) (1989) 64–84.

[4] M. L. Minion, A projection method for locally refined grids, J. Comput. Phys.
127 (1) (1996) 158–178.

23

[5] D. F. Martin, K. L. Cartwright, Solving Poisson’s equation using adaptive mesh
refinement, Technical Report UCB/ERI M96/66 UC Berkeley.

[6] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, B. V. Straalen, Chombo Software Package for AMR Applications -
Design Document, unpublished (2000).

[7] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for
Poisson’s equation on irregular domains, J. Comput. Phys. 147 (2) (1998) 60–85.

[8] D. F. Martin, An adaptive cell-centered projection method for the
incompressible Euler equations, Ph.D. thesis, University of California, Berkeley
(1998).

[9] M. C. Thompson, J. H. Ferziger, An adaptive multigrid technique for the
incompressible Navier-Stokes equations, J. Comput. Phys. 82 (1) (1989) 94–
121.

[10] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, M. J. Welcome, A
conservative adaptive projection method for the variable density incompressible
Navier-Stokes equations, J. Comput. Phys. 142 (1) (1998) 1–46.

[11] M. T. Bettencourt, A block-structured adaptive steady–state solver for the
drift–diffusion equations, Ph.D. thesis, Dept. of Mechanical Engineering, Univ.
of California, Berkeley (May 1998).

[12] P. Colella, M. Dorr, D. Wake, Numerical solution of plasma-fluid equations
using locally refined grids, J. Comput. Phys. 152 (1999) 550–583.

[13] P. Colella, P. R. Woodward, The piecewise parabolic method (PPM) for gas-
dynamical simulations, J. Comput. Phys. 54 (1984) 174–201.

[14] A. Bourlioux, A. T. Layton, M. L. Minion, High-order multi-implicit spectral
deferred correction methods for problems of reacting fluid flow, J. Comput.
Phys. 189 (2003) 651–675.

24

